Shortcuts

Source code for torch.nn.modules.batchnorm

from __future__ import division

import torch
from torch import Tensor
from ._functions import SyncBatchNorm as sync_batch_norm
from .module import Module
from torch.nn.parameter import Parameter
from .. import functional as F
from .. import init

from typing import Optional, Any


class _NormBase(Module):
    """Common base of _InstanceNorm and _BatchNorm"""
    _version = 2
    __constants__ = ['track_running_stats', 'momentum', 'eps',
                     'num_features', 'affine']
    num_features: int
    eps: float
    momentum: float
    affine: bool
    track_running_stats: bool
    # WARNING: weight and bias purposely not defined here.
    # See https://github.com/pytorch/pytorch/issues/39670

    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
        momentum: float = 0.1,
        affine: bool = True,
        track_running_stats: bool = True
    ) -> None:
        super(_NormBase, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        self.affine = affine
        self.track_running_stats = track_running_stats
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(num_features))
            self.register_buffer('running_var', torch.ones(num_features))
            self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
        else:
            self.register_parameter('running_mean', None)
            self.register_parameter('running_var', None)
            self.register_parameter('num_batches_tracked', None)
        self.reset_parameters()

    def reset_running_stats(self) -> None:
        if self.track_running_stats:
            self.running_mean.zero_()
            self.running_var.fill_(1)
            self.num_batches_tracked.zero_()

    def reset_parameters(self) -> None:
        self.reset_running_stats()
        if self.affine:
            init.ones_(self.weight)
            init.zeros_(self.bias)

    def _check_input_dim(self, input):
        raise NotImplementedError

    def extra_repr(self):
        return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
               'track_running_stats={track_running_stats}'.format(**self.__dict__)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)

        if (version is None or version < 2) and self.track_running_stats:
            # at version 2: added num_batches_tracked buffer
            #               this should have a default value of 0
            num_batches_tracked_key = prefix + 'num_batches_tracked'
            if num_batches_tracked_key not in state_dict:
                state_dict[num_batches_tracked_key] = torch.tensor(0, dtype=torch.long)

        super(_NormBase, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)


class _BatchNorm(_NormBase):

    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                 track_running_stats=True):
        super(_BatchNorm, self).__init__(
            num_features, eps, momentum, affine, track_running_stats)

    def forward(self, input: Tensor) -> Tensor:
        self._check_input_dim(input)

        # exponential_average_factor is set to self.momentum
        # (when it is available) only so that it gets updated
        # in ONNX graph when this node is exported to ONNX.
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            # TODO: if statement only here to tell the jit to skip emitting this when it is None
            if self.num_batches_tracked is not None:
                self.num_batches_tracked = self.num_batches_tracked + 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        return F.batch_norm(
            input, self.running_mean, self.running_var, self.weight, self.bias,
            self.training or not self.track_running_stats,
            exponential_average_factor, self.eps)


class BatchNorm1d(_BatchNorm):
    r"""Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D
    inputs with optional additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, L)` slices, it's common terminology to call this Temporal Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, L)` or :math:`L` from input of size :math:`(N, L)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm1d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm1d(100, affine=False)
        >>> input = torch.randn(20, 100)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 2 and input.dim() != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'
                             .format(input.dim()))


class BatchNorm2d(_BatchNorm):
    r"""Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs
    with additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, H, W)` slices, it's common terminology to call this Spatial Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, H, W)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm2d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm2d(100, affine=False)
        >>> input = torch.randn(20, 100, 35, 45)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))


class BatchNorm3d(_BatchNorm):
    r"""Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs
    with additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, D, H, W)` slices, it's common terminology to call this Volumetric Batch Normalization
    or Spatio-temporal Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, D, H, W)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C, D, H, W)`
        - Output: :math:`(N, C, D, H, W)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm3d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm3d(100, affine=False)
        >>> input = torch.randn(20, 100, 35, 45, 10)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'
                             .format(input.dim()))


[docs]class SyncBatchNorm(_BatchNorm): r"""Applies Batch Normalization over a N-Dimensional input (a mini-batch of [N-2]D inputs with additional channel dimension) as described in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension over all mini-batches of the same process groups. :math:`\gamma` and :math:`\beta` are learnable parameter vectors of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are sampled from :math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to `torch.var(input, unbiased=False)`. Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default :attr:`momentum` of 0.1. If :attr:`track_running_stats` is set to ``False``, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well. .. note:: This :attr:`momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momemtum} \times x_t`, where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the new observed value. Because the Batch Normalization is done for each channel in the ``C`` dimension, computing statistics on ``(N, +)`` slices, it's common terminology to call this Volumetric Batch Normalization or Spatio-temporal Batch Normalization. Currently :class:`SyncBatchNorm` only supports :class:`~torch.nn.DistributedDataParallel` (DDP) with single GPU per process. Use :meth:`torch.nn.SyncBatchNorm.convert_sync_batchnorm()` to convert :attr:`BatchNorm*D` layer to :class:`SyncBatchNorm` before wrapping Network with DDP. Args: num_features: :math:`C` from an expected input of size :math:`(N, C, +)` eps: a value added to the denominator for numerical stability. Default: ``1e-5`` momentum: the value used for the running_mean and running_var computation. Can be set to ``None`` for cumulative moving average (i.e. simple average). Default: 0.1 affine: a boolean value that when set to ``True``, this module has learnable affine parameters. Default: ``True`` track_running_stats: a boolean value that when set to ``True``, this module tracks the running mean and variance, and when set to ``False``, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: ``True`` process_group: synchronization of stats happen within each process group individually. Default behavior is synchronization across the whole world Shape: - Input: :math:`(N, C, +)` - Output: :math:`(N, C, +)` (same shape as input) Examples:: >>> # With Learnable Parameters >>> m = nn.SyncBatchNorm(100) >>> # creating process group (optional) >>> # process_ids is a list of int identifying rank ids. >>> process_group = torch.distributed.new_group(process_ids) >>> # Without Learnable Parameters >>> m = nn.BatchNorm3d(100, affine=False, process_group=process_group) >>> input = torch.randn(20, 100, 35, 45, 10) >>> output = m(input) >>> # network is nn.BatchNorm layer >>> sync_bn_network = nn.SyncBatchNorm.convert_sync_batchnorm(network, process_group) >>> # only single gpu per process is currently supported >>> ddp_sync_bn_network = torch.nn.parallel.DistributedDataParallel( >>> sync_bn_network, >>> device_ids=[args.local_rank], >>> output_device=args.local_rank) """ def __init__( self, num_features: int, eps: float = 1e-5, momentum: float = 0.1, affine: bool = True, track_running_stats: bool = True, process_group: Optional[Any] = None ) -> None: super(SyncBatchNorm, self).__init__(num_features, eps, momentum, affine, track_running_stats) self.process_group = process_group # gpu_size is set through DistributedDataParallel initialization. This is to ensure that SyncBatchNorm is used # under supported condition (single GPU per process) self.ddp_gpu_size = None def _check_input_dim(self, input): if input.dim() < 2: raise ValueError('expected at least 2D input (got {}D input)' .format(input.dim())) def _specify_ddp_gpu_num(self, gpu_size): if gpu_size > 1: raise ValueError('SyncBatchNorm is only supported for DDP with single GPU per process') self.ddp_gpu_size = gpu_size def forward(self, input: Tensor) -> Tensor: # currently only GPU input is supported if not input.is_cuda: raise ValueError('SyncBatchNorm expected input tensor to be on GPU') self._check_input_dim(input) # exponential_average_factor is set to self.momentum # (when it is available) only so that it gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: self.num_batches_tracked = self.num_batches_tracked + 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / self.num_batches_tracked.item() else: # use exponential moving average exponential_average_factor = self.momentum need_sync = self.training or not self.track_running_stats if need_sync: process_group = torch.distributed.group.WORLD if self.process_group: process_group = self.process_group world_size = torch.distributed.get_world_size(process_group) need_sync = world_size > 1 # fallback to framework BN when synchronization is not necessary if not need_sync: return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, exponential_average_factor, self.eps) else: if not self.ddp_gpu_size: raise AttributeError('SyncBatchNorm is only supported within torch.nn.parallel.DistributedDataParallel') return sync_batch_norm.apply( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, exponential_average_factor, process_group, world_size)
[docs] @classmethod def convert_sync_batchnorm(cls, module, process_group=None): r"""Helper function to convert all :attr:`BatchNorm*D` layers in the model to :class:`torch.nn.SyncBatchNorm` layers. Args: module (nn.Module): module containing one or more attr:`BatchNorm*D` layers process_group (optional): process group to scope synchronization, default is the whole world Returns: The original :attr:`module` with the converted :class:`torch.nn.SyncBatchNorm` layers. If the original :attr:`module` is a :attr:`BatchNorm*D` layer, a new :class:`torch.nn.SyncBatchNorm` layer object will be returned instead. Example:: >>> # Network with nn.BatchNorm layer >>> module = torch.nn.Sequential( >>> torch.nn.Linear(20, 100), >>> torch.nn.BatchNorm1d(100), >>> ).cuda() >>> # creating process group (optional) >>> # process_ids is a list of int identifying rank ids. >>> process_group = torch.distributed.new_group(process_ids) >>> sync_bn_module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module, process_group) """ module_output = module if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module_output = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group) if module.affine: with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked for name, child in module.named_children(): module_output.add_module(name, cls.convert_sync_batchnorm(child, process_group)) del module return module_output

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources